Kinetic study of the plasma-membrane potential in procyclic and bloodstream forms of Trypanosoma brucei brucei using the fluorescent probe bisoxonol.

نویسندگان

  • F Defrise-Quertain
  • C Fraser-L'Hostis
  • D Coral
  • J Deshusses
چکیده

The characteristics of the plasma-membrane potential of procyclic and bloodstream forms of Trypanosoma brucei brucei (cultured cells) were investigated using the fluorescent anionic probe bisoxonol. Observation of a stable and representative plasma-membrane potential in the resting state required careful washing, centrifugation and maintenance of the cells at room temperature before measurement. Bloodstream forms were more prone to depolarization during washing at 4 degrees C than procyclic cells. The higher fluorescence observed in the presence of long slender cells than in the presence of procyclic cells shows that the plasma-membrane potential is more negative in the insect form. Healthy dilute cells can sustain their plasma-membrane potential for hours in the presence of external glucose. The presence of a high K+ concentration in the medium did not promote by itself the depolarization of either type of cell. Study of bisoxonol fluorescence as a function of time allowed us to follow the kinetics of the action of metabolic inhibitors in the presence of various ions. o-Vanadate (1 mM) was found to depolarize bloodstream-form cells rapidly but only in a phosphate-free NaCl buffer. Omeprazole and strophanthidin also specifically depolarized bloodstream-form trypanosomes. However, NN'-dicyclohexylcarbodi-imide depolarized both types of cell, but more rapidly for bloodstream-form cells. Bloodstream-form trypanosomes appear to use mainly a vanadate-sensitive Na+ pump to maintain their Na+-diffusion gradient. However, most of the ATPase inhibitors tested had little or no effect on the plasma-membrane potential of procyclics suggesting that this form of trypanosome may rely on several regulation mechanisms.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Polo-like kinase is expressed in S/G2/M phase and associated with the flagellum attachment zone in both procyclic and bloodstream forms of Trypanosoma brucei.

Trypanosoma brucei, the etiologic agent of African sleeping sickness, divides into insect (procyclic) and bloodstream forms. These two forms are subject to distinct cell cycle regulations, with cytokinesis controlled primarily by basal body/kinetoplast segregation in the procyclic form but by mitosis in the bloodstream form. Polo-like kinases (PLKs), known to play essential roles in regulating ...

متن کامل

Expression of the RNA-binding protein RBP10 promotes the bloodstream-form differentiation state in Trypanosoma brucei

In nearly all eukaryotes, cellular differentiation is governed by changes in transcription, and stabilized by chromatin and DNA modification. Gene expression control in the pathogen Trypanosoma brucei, in contrast, relies almost exclusively on post-transcriptional mechanisms, so RNA binding proteins must assume the burden that is usually borne by transcription factors. T. brucei multiply in the...

متن کامل

A differential role for actin during the life cycle of Trypanosoma brucei.

Actin is expressed at similar levels but in different locations in bloodstream and procyclic forms of Trypanosoma brucei. In bloodstream forms actin colocalizes with the highly polarized endocytic pathway, whereas in procyclic forms it is distributed throughout the cell. RNA interference demonstrated that in bloodstream forms, actin is an essential protein. Depletion of actin resulted in a rapi...

متن کامل

Genome-wide RNAi selection identifies a regulator of transmission stage-enriched gene families and cell-type differentiation in Trypanosoma brucei

Trypanosoma brucei, causing African sleeping-sickness, exploits quorum-sensing (QS) to generate the 'stumpy forms' necessary for the parasite's transmission to tsetse-flies. These quiescent cells are generated by differentiation in the bloodstream from proliferative slender forms. Using genome-wide RNAi selection we screened for repressors of transmission stage-enriched mRNAs in slender forms, ...

متن کامل

An Atypical Mitochondrial Carrier That Mediates Drug Action in Trypanosoma brucei

Elucidating the mechanism of action of trypanocidal compounds is an important step in the development of more efficient drugs against Trypanosoma brucei. In a screening approach using an RNAi library in T. brucei bloodstream forms, we identified a member of the mitochondrial carrier family, TbMCP14, as a prime candidate mediating the action of a group of anti-parasitic choline analogs. Depletio...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Biochemical journal

دوره 314 ( Pt 2)  شماره 

صفحات  -

تاریخ انتشار 1996